
SmartPasswords: Increasing Password Managers’ Usability by
Generating Compliant Passwords

João Miguel Pereira Campos
joao.miguel.campos@tecnico.ulisboa.pt

Instituto Superior Técnico
Lisboa, Portugal

ABSTRACT
Passwords are still the go-to method to provide efficient user authen-
tication in web applications, despite research showing that users
usually choose weak passwords and reuse them across different
services. Security experts advocate the usage of password managers.
These tools can improve account security by enabling the utiliza-
tion of unique and robust passwords, simultaneously improving
the usability and convenience of text password authentication.

The imposition of overly restrictive password policies poses
challenges to password managers and may impact their usage:
users become frustrated when generated passwords do not comply
with such policies.

We aim to solve this problem by 1) combining a language capable
of describing password rules and a widely used password manager
— Bitwarden —, and 2) expanding said language to express policies
suggested by experts, which combine security and usability.

We generated compliant passwords for every policy tested with
our prototype, and Bitwarden accepted our solution to incorporate
in their final product. These results are encouraging and suggest
that password managers benefit from this ability to interpret pass-
word policies, which is a further step to increase the adoption of
password managers.

KEYWORDS
Passwords, Password Managers, Usability, Password Policies

1 INTRODUCTION
Throughout the years, and still, to this day, passwords have been
seen as a double-edged sword: on the one hand, they were — and
still are — the go-to method to provide efficient authentication in
web applications, not only due to its simplicity in implementation,
or the low cost in maintenance but also because users have been
using them for quite a while, making password-based login forms
almost second nature to the general user.

On the other hand, users tend to choose weak passwords that are
easy to crack [13, 15]. Most of the time, they have an incomplete
mental model of how password-based security works, or worse, do
not have one at all. This lack of knowledge leads users to commit to
erroneous behaviors, like choosing easily guessable passwords or
patterns (e.g., qwerty or 1qaz2wsx) and, since they consider them
strong passwords, they eventually reuse them in multiple accounts,
as demonstrated by various studies [11, 13, 15, 29, 35].

Password managers are recommended [11, 30] to safely manage
user credentials, but they still have some obstacles that prevent mass
adoption by the users, e.g., the generated passwords are often not
compliant [7, 39] with the password composition policies stipulated
by the websites they use [10]. This leads to frustrated users and

therefore possible cease of use of password managers. However,
users are not to blame. As Stajano et al. [34] identified, this problem
arises due to very restrictive password composition policies that
services usually have [12].

1.1 Work Objectives
Our main goal is to explore methods that enable password man-
agers to generate compliant passwords according to each service’s
password requirements.

There are two possible solutions to this problem:
(1) Let the user configure the password generator’s parameters.

This option may appear to be the most trivial but it puts
the burden back on the user, negating one of the advantages
of a password manager: remove the password generation
burden. Another problem with this approach may present
itself when websites do not explicitly express their password
policies. The user will become frustrated and probably resort
to password reuse.

(2) Provide a Domain System Language (DSL) that services can
use to specify their required password composition policies
and password managers use it to interpret the policies ex-
pressed and generate compliant passwords. This method
allows for seamless and transparent integration with pass-
word managers, fulfilling their purpose. This approach has
minor impacts in user’s efforts but great impact on password
manager’s usability.

The first option is the status quo, being present in all password
managers nowadays. In our work we delve into the second option
because it has greater potential to improve password manager’s
usability since it makes the whole process transparent to the user.

Various academic studies already emphasize this approach: Sta-
jano et al. proposed the creation of HTML semantic labels [34] and
Horsch et al. proposed the Password Policy Markup Language [19].
Oesch and Ruoti [25] recently reinforced this idea, suggesting that
this type of annotations could help users adopting password man-
agers, as well as increase the accuracy of the password generator.

While investigating a way to achieve this with modern password
managers, we found that Apple has also developed a DSL to express
Password Autofill Rules [3]. The idea is to add a specification to
the HTML code, in the form of annotations. Google has also done
something of this nature [16], in the form of an API which could
be called by a password manager when generating a password for
a given web domain.

Having both Apple and Google — two tech giants — trying to
solve this problem reinforces the importance of the problem and
the solution. It shows that even the tech industry is striving to help
users adopt password managers by making them more usable.

João Miguel Pereira Campos

In this project we propose to:

• Review the state-of-the-art and any relevant solutions to this
problem, studying the extent to which the recommendations
made by researchers are being incorporated into today’s
password managers and password-rules-expressing DSL’s.

• Explore whether existing DSL’s are capable of effectively de-
scribing a website’s password policy in a readable format for
any password manager, rendering the generation of random,
compliant passwords seamless and efficient.

• Extend existing DSL’s with constructs that might overcome
current limitations. For example, Apple’s DSL mentioned
above seems to be increasingly adopted, but it is still unable
to express policies recommended by the academic literature,
such as the policies recommended in Shay et al.’s or Tan et
al.’s [32, 38] studies.

• Implement software packages that facilitate the adoption
and integration of our proposals.

1.2 Contributions
In summary, our contributions are:

• A survey on existing state-of-the art languages that can be
used to express password composition policies and that can
be used as annotations for (online) password generators.

• SmartPasswords, a new feature in the popular password
manager Bitwarden [8]1 that integrates Apple’s Password
Autofill rules, allowing Bitwarden to only generate compliant
passwords. This feature has already been approved by the
Bitwarden team and it will be adopted by Bitwarden (after
going through their code review process).

• Integration of the SmartPasswords feature into the prototype
password manager being developed in the PassCert project2,
which uses a formally verified password generator different
from Bitwarden’s password generator. This demonstrates
that our proposal can be integrated with various products.

• Extension of Apple’s DSL with three new features:
– The minclasses rule, that allows to set a minimum num-

ber of character classes present in the password.
– The blocklist rule, that allows to check the password

against a list of previously breached passwords.
– The character range feature, that allows to specify a

minimum and maximum for a given character or character
class.

• Creation of a Node Package Manager (npm) package that
contains our extension of Apple’s DSL, allowing other re-
searchers and developers to use and integrate our extended
DSL into their products.

This project is part of the PassCert [26] research project, a CMU-
Portugal exploratory project that aims to build an open-source,
proof-of-concept password manager that through the use of formal
verification, is guaranteed to satisfy properties on data storage and

1Bitwarden is an Open-Source password manager, “used by millions of individuals and
businesses” - https://bitwarden.com/help/article/security-faqs/ - Point #4 of question
"Why should I trust Bitwarden with my passwords?"
2PassCert is a CMU Portugal Exploratory Project funded by Fundação para a Ciência
e Tecnologia (FCT), with reference CMU/TIC/0006/2019

password generation. Our main contribution is on improving the
usability of PassCert’s password manager.

Research Paper. Parts of the work presented in this thesis were
used in the following research paper [17]:

• Miguel Grilo, João Campos, João F. Ferreira, José Bacelar
Almeida, and AlexandraMendes. Verified Password Generation
from Password Composition Policies. Submitted to publication.
2021

2 BACKGROUNDWORK
In this section, we explore previous work done on password man-
agers and how they respond to password-based authentication
security and usability problems. We also discuss studies involv-
ing users and their behaviour regarding password usage. Given
our goals, we focus on aspects related to password generation and
password autofill.

2.1 Password-Based Authentication
Passwords are still the most common method of authentication in
web applications. They are simple to implement, have low mainte-
nance and users are accustomed to them.

Even though the possible substitutes for this authentication
mechanism appear promising and better security-wise, passwords
seem to come up ahead when considering deployability. In 2012,
Bonneau et al. [9] evaluated and compared passwords to other types
of web authentication, like hardware tokens or biometric authenti-
cation. This evaluation was based on Usability, Deployability, and
Security benefits. They concluded that all of the studied methods
are far from perfect and that none of the alternatives was able to
surpass passwords, i.e., to be better on one or more benefits and
be as good as passwords on all the others. This means that despite
most of the options do better on some criteria they are all worse
in some other. The authors also make the case that for high-value
accounts, this trade-off might be worth the cost. As the authors
state, “Thus, the current state of the world is a Pareto equilibrium. Re-
placing passwords with any of the schemes examined is not a question
of giving up an inferior technology for something unarguably better,
but of giving up one set of compromises and trade-offs in exchange
for another” [9].

This equilibrium seems to be too strong to disrupt, whether be-
cause it would imply that service providers adapt their services to
alternative authentication methods or simply because users proba-
bly would not take the change lightly, since they are too accustomed
to passwords. Consequently, it appears to be a fair statement that
passwords are here to stay.

Password reuse is evidently a major predicament regarding pass-
word security, which can be aggravated by XSS attacks, using weak-
nesses in websites to inject malicious code and grant the attacker
the ability to steal sensitive data. Whenever an attacker gets ac-
cess to the user’s credentials, a domino effect [20] takes place: all
the sites where the user has this revealed password are no longer
protected — it is only a matter of time to guess the user’s user-
name. Ives et al. [20] are very clear: “Users who reuse passwords
often fail to realize their most well-defended account is no more secure
than the most poorly defended account for which they use that same
password.”.

https://bitwarden.com/help/article/security-faqs/

SmartPasswords: Increasing Password Managers’ Usability by Generating Compliant Passwords

2.2 Password Reuse
The number of services and applications in the internet that require
a user to authenticate has grown at an incredible pace [40]. To
cope with this increasing number of accounts, users tend to reuse
passwords across multiple websites. Like a key that opens multiple
doors facilitates the task of opening doors but is dangerous if lost,
the same principle applies to reused passwords when a malicious
user gets hold of these passwords — the attacker can now unlock
multiple accounts with the same password.

In a recent study with 30 participants, including users who use
no password-specific tools at all, those who use password man-
agers built into browsers or operating systems, and those who use
separately installed password managers, Pearman et al. [30] found
that users of built-in password managers may be driven more by
convenience, while users of separately installed tools appear more
driven by security. This helps explain why past findings conclude
that there are higher levels of password reuse among users of built-
in password managers. The authors also identify new obstacles for
password manager adoption, such as confusion about the source of
password prompts or the meaning of "remember me" options.

Users are regularly regarded as lazy and unmotivated on security
questions, especially regarding passwords. Herley [18] argues that
this is both unfair and untrue: users view security guidance from a
different perspective than security researchers — an economical one.
Users consider adopting these pieces of advice and usually end up
discarding them. This antagonistic view occurs because users only
care about the average or actual harm of an attack; nevertheless,
security researchers frequently present guidelines with a worst-
case scenario in mind. Herley formulates a rough draft about the
cost of the user’s time, commonly assumed to have no cost at all:
$2.6 billion. With this number, we treat the “user as a professional
who bills at $2.6 billion an hour” [18], which allows for a better
understanding of why users ignore security policies.

2.3 Password Managers
Password managers are recommended by security researchers [11,
30]. They allow the generation of randomly strong passwords, and
they relieve users from the burden of remembering the creden-
tials to the multitude of web applications that an average user
has accounts in. Notwithstanding, password managers also have
some vulnerabilities. There is a big overhead for users to manually
change passwords for all their accounts, which is seen as a big cost
from the user’s perspective. This is a big usability obstacle against
wide-spread usage of password managers.

Security vulnerabilities also shadow password managers, rang-
ing from occasionally generating easily guessable random pass-
words, to storing private information in clear-text and auto-filling
information into possible endangered websites [25].

During the last 16 years, there were multiple proposals to miti-
gate most of the risks associated with password-based authentica-
tion.

oPass, developed by Sun et al. [37] relieves users from having to
remember or type any passwords into conventional computers for
authentication, using a cellphone, which is needed to generate one-
time passwords, as a method to achieve this user authentication,

transmitting the information over a different communication chan-
nel, SMS. This is identical to Token Based Authentication, where
the token is the SMS received and is used nowadays as an extra
layer of protection for most applications.

McCarney et al. [23] evaluate the security of dual-possession
authentication, that offers encrypted storage of passwords and theft-
resistance without the use of a master password and furthermore,
propose Tapas, a browser extension which takes advantage of this
authentication method to provide a password manager that does
not require server side changes, nor a master password whilst
protecting all the stored data in the eventuality that the primary or
secondary device is compromised.

Recently, Oesch and Ruoti [25] revisited previous work [14, 22,
33, 36] done on password managers’ security and usability. Even
though some of the vulnerabilities exposed have been fixed, some
still remain to this day, such as autofill in a website with an invalid
HTTPS certificate or a significant amount of unencrypted metadata
being stored, like a page URL, a user’s username or information
about the creation and last access of a given account.

Oesch and Ruoti study eleven browser-based password managers
and two desktop password managers, and, according to them, their
work is the first to consider all three stages of a password manager
lifecycle — password generation, password storage, and password
autofill. The next subsections concern each one of these stages, the
vulnerabilities that the authors found, and past work developed on
the subject.

2.3.1 Password Generation. Password generation concerns the gen-
eration of strong, random and unique passwords, such that these
generated passwords are very difficult to be cracked by guessing
attacks and are nearly impossible for a regular user to memorize
them.

Oesch and Ruoti’s [25] work discovered that not all studied
password managers include the same character set, which can be
misleading for a user when generating an allegedly unique and
random password. It also concludes that passwords containing 12
or more characters generated by the analyzed password managers
are, generally, resilient against online and offline guessing attacks.
Still, there were some discrepancies in the strength of generated
passwords, specially with length 8, which significantly impacted the
percentage of passwords that were secure against offline guessing
attacks — almost every password was secure against online guessing
attacks. These differences in strength can be justified by the different
sets of characters used to generate a password. There is also a
problem related to the randomness of these generated passwords:
they can be randomly weak passwords, even when containing
letters, digits, and symbols, e.g., d@rKn3s5 or Tz5a5a5a.

Ross et al. [31] suggest PwdHash, a browser extension that creates
a different password for each site, which defends against password
phishing and improves general security. These passwords are gen-
erated using cryptographic hash functions, in combination with the
actual plaintext password, some basic information of the website,
and an optional private salt stored in the client machine. It is fairly
simple to understand that, if an attacker gets access to the password
of a given site, he just got the hashed value of the password, and
not the password itself, leaving other user login information that
shares the same password protected.

João Miguel Pereira Campos

2.3.2 Password Storage. The second stage of the lifecycle is pass-
word storage. It concerns the safe storage of the generated pass-
words and all the user details that help a password manager identify
the website in question.

With their analysis, Oesch and Ruoti [25] discovered that the
vulnerabilities exposed by Gasti and Rasmussen [14], which allowed
an attacker to either gain read access or read and write access to the
password manager’s database, were mostly mitigated, resulting in
better storage of the password manager’s metadata. Even so, there
are still some password managers that store relevant metadata in
plaintext, either by default or as a last resource. This metadata can
be the manager’s settings or information that allows to identify a
user like website URL, website icons or the username of the user in
a particular website.

A study conducted in 20193 also found that most of the pass-
word managers were not encrypting passwords written in memory,
making it relatively easy for an attacker to extract passwords from
the password vault even when not in use.

2.3.3 Password Autofill. Autofill is the third and last step of the
lifecycle. Autofill is the ability that a password manager has to
fill login forms automatically. It is a useful tool for users since
they can skip the trouble of having to type passwords or skim
through their list of credentials stored in the manager, but it is not
without security concerns. For most applications, autofill is still
done automatically, not requiring user interaction. However, as
pointed out by some authors, this is dangerous [33, 36].

With their work, Oesch and Ruoti [25] found that, of the studied
browser-based password managers, only Safari’s would require user
interaction always. Firefox’s manager defaults to autofill without
any user interaction, even if there is an available option to revert
this. Chrome always autofills user credentials and does not have an
option to change this setting. However, Chrome does not autofill
for sites with a bad HTTPS certificate, whilst Firefox maintains its
regular behaviour of autofilling, endangering the user.

Both Stajano et al.’s [34] and Horch et al.’s [19] work proposes
similar solutions to the problem of password managers not being
able to know the password composition rules that a given website
has in place.

2.3.4 Password Rules Annotations. Stajano et al. [34] propose adding
HTML semantic labels, or annotations, to facilitate and normalize
the work done by password managers, by allowing them to read
password policies declared by websites.

Horch et al. [19] put forward a Password Policy Markup Language,
that allows websites to describe their policies regarding passwords.
This language is exposed as a service.

2.3.5 Google’s Password Requirements API. Google has also imple-
mented a solution regarding this problem [16]. They implemented
an API which could be called by a password manager when gener-
ating a password for a given web domain. This way, the generator
can learn the password requirements of that particular website —
if the API has any information regarding it. The data is returned

3https://www.ise.io/casestudies/password-manager-hacking/ - Last access: 30 October
2021

as Procotol Buffers (protobuf) 4. As of February of 2021, this API
includes password requirements for 237 websites5.

2.3.6 Apple’s Password Autofill Rules. Apple created the Password
Autofill Rules [3]. These rules are described using an HTML anno-
tation — passwordrules — that lets the webadmin define the rules
for creating a valid password. These rules can later be parsed by
any password manager to generate compliant password.

We found that Apple’s approach is more straightforward: it is
easier to use, from the webadmin’s perspective, the code is open-
source, and there is more support for developers. Plus, it is closely
related to previous research suggestions. Thus, we will base our
solution on these annotations.

3 EXTENDING APPLE’S PASSWORD
AUTOFILL RULES

Initially we had planned to create a new DSL to accommodate
suggestions made by Stajano et al.’s work [34] and reinforced by
Oesch and Ruoti’s research [25]. However, during the development
phase of this project, we found that Apple had already made efforts
in this direction [3], and that their browser, Safari, and most of
the applications in macOS and iOS take advantage of this. Thus,
in order to maximize the possible impact of our work, we decided
that we could start our work building off of these Password Autofill
Rules.

3.1 Apple’s Password Autofill Rules
Apple’s Password Autofill Rules [3] are a DSL that can be used to
express password composition policies. The goal is to provide a
standardized way for applications to generate strong passwords
that comply with a specified policy.

Apple’s DSL is based on five properties — required, allowed,
max-consecutive, minlength, and maxlength — and some identi-
fiers that describe character classes — upper, lower, digit, special,
ascii-printable, and unicode. These are the elements that allow the
description of the password rules. It is also possible to specify a
custom set of characters by surrounding it with square brackets
(e.g., [abcd] denotes the lowercase letters from a to d). For exam-
ple, to require a password with at least eight characters consisting
of a mix of uppercase letters, lowercase letters, and numbers, the
following rules can be used:
required: upper; required: lower; required: digit;

minlength: 8;

3.2 Properties description
The required property is used when the restrictions must be fol-
lowed by all generated passwords. The allowed property is used
to specify a subset of allowed characters, i.e., it is used when a
password is permitted to have a given character class, but it is not
mandatory.

If allowed is not included in the rule, all the required characters
are permitted. If both properties are specified, the subspace of
all required and allowed is permitted. For example, to have a

4Protobuf - https://github.com/protocolbuffers/protobuf/releases/tag/v3.19.0
5https://github.com/apple/password-manager-resources/issues/427

https://www.ise.io/casestudies/password-manager-hacking/
https://github.com/protocolbuffers/protobuf/releases/tag/v3.19.0
https://github.com/apple/password-manager-resources/issues/427

SmartPasswords: Increasing Password Managers’ Usability by Generating Compliant Passwords

password that contains at least one lowercase letter, minimum size
of 8 and can have uppercase and digits, these rules can be used:

minlength: 8; required: lower; allowed: upper, digit;

This rule will allow passwords like abcdefghi, aBCDEFGHI, a12345
67 or aBC12345. If neither required nor allowed is specified, every
ASCII character is permitted.

The max-consecutive property represents the maximum length
of a run of consecutive identical characters that can be present in
the generated password, e.g., the sequence aah would be possi-
ble with max-consecutive: 2, but aaah would not. If multiple
max-consecutive properties are specified, the value considered
will be the minimum of them all.

The minlength and maxlength properties denote the minimum
and maximum number of characters, respectively, that a password
can have to be accepted. Both numbers need to be greater than 0
and minlength has to be at most maxlength; otherwise, the default
length of the password manager will be used.

3.3 Identifiers
Next to the allowed or required properties, we can use any of the
default identifiers, which describe conventional character classes.
The identifier upper describes the character class that includes
all uppercase letters, i.e., [A-Z]; the identifier lower describes the
character class that includes all lowercase letters, i.e., [a-z]; the
digit identifier describes the character class that includes all digits,
i.e., [0-9]; and the special identifier describes the character class
that includes -~!@#$%ˆ&*_+=‘|(){}[:;"’<>,.?] and ␣.

The identifiers ascii-printable and unicode describe the char-
acter classes that include all ASCII printable characters and all the
unicode characters, respectively.

Additionally, users of the DSL can choose to describe their cus-
tom character classes by surrounding the characters with squared
brackets — [] — e.g., to require a password to have at least one
lowercase vowel, minimum length of 8, and to allow digits and
uppercase letters, the following rule can be used:

minlength: 8; required: [aeiou]; allowed: upper, digit;

The rule required: [aeiou]; requires that at least one of the
characters in this custom set must be present in the password.

The default password rule when no rule is defined is allowed:
ascii-printable;.

3.4 Weaknesses
Apple’s DSL is an effort from password manager’s developers to
augment usability and reduce users’ frustration when a generated
password fails to comply with a website’s password policy [10].
With it, it is possible to achieve a great set of password policies
with all these rules. Apple has even provided a website that allows
a web admin to test password policies and view passwords that
comply with such policies [6]. However, it appears there are some
incoherences, either with the official documentation or with the
password generator itself.

For example, in the official documentation [3], one can read “To
require at least one digit or one special character, but not both, add
this to your markup”:

required: upper; required: lower; required: digit,
[-().&@?’#,";+]; max-consecutive: 2; minlength: 8;

From our understanding, these rules would accept passwords
like ABcd56eF or like ABcd-#eF, but not like ABcd56-#. That is to
say that these rules restrict the required characters: the password
must have upper, lower, and either digit or [-().&\@?'#,";+],
but not both. Still, this is not the case in the official generator [6],
which generates passwords like &z,#Iu5(and id3LYk+H for the
same rules: they both have digits and special characters.

Another shortcoming of this DSL is the fact that some password
policies studied and suggested by recent research literature on
password composition policies are not possible to describe (e.g.
the policies used by Tan et al.’s and Shay et al.’s work [32, 38]). In
particular, it is not possible to express the blocklist constraints or
the restraints on the minimum number of classes that a password
should have. It is also impossible to restrict the frequency of a
character — the required rule only guarantees that the character
will appear once. Such was the motivation that led us to extend
Apple’s DSL, as described in the following section.

3.5 The npm package
In order to implement our extension to Apple’s DSL, we based our
code on their parser6, which written in plain JavaScript. This parser
receives an input that contains the password rules and parses them
into an array of rules. As an example, for the rules

required: upper; allowed: upper; allowed: lower;
minlength: 12; maxlength: 73;

the parser will return an array containing 4 rules, each with a
correspondent name and value.

We wanted to make the process of using this parser as simple
as possible, i.e., one simple install command and we could use its
inherent functionalities. So, we opted to create an npm package.
According to their website, npm is “a public collection of packages of
open-source code for Node.js, front-end web apps, mobile apps, robots,
routers, and countless other needs of the JavaScript community”.

To create this package, we migrated Apple’s parser code into
Typescript7 and implemented our extension to the parser.

Blocklist Rule. When the input rules contain a blocklist rule,
there are two possibilities:

• The rule value is hibp. In this case, the value is returned
without changes, to let the password manager know that a
check against HIBP’s API must be done.

• The rule value is default. This value will make the parser
return the list of the 100 000 most commonly used pass-
words [24]. Now the password manager should verify that
the generated password does not contain any of these pass-
words.

The password blocklist, in our extension, is a Singleton. This
means that there is only one point of access to it, and there is only
one instance of this blocklist. Thus, it is possible to substitute the
blocklist by another at will.

6Apple’s JavasScript parser. https://github.com/apple/password-manager-resources/
blob/main/tools/PasswordRulesParser.js
7TypeScript is a strongly typed programming language which builds on JavaScript
and provides better tooling at any scale. https://www.typescriptlang.org/

https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://www.typescriptlang.org/

João Miguel Pereira Campos

Minclasses Rule. The minclasses rule is always present, even
when it is unused. Its default value is 1, i.e., every password must
contain at least one character class. For instance, a policy such as
“Password must contain at least 8 characters and at least 1 uppercase
letter” can be described as:

minlength: 8; required: upper; allowed:
ascii-printable;

Upon giving this set of rules to the parser, the result will include
a minclasses rule, with its default value.

The possible values for the minclasses rule are the integers 1
through 4. If the rule has a value that is lower than 1 or greater
than 4, the parser will set it to 1 and 4, respectively.

Character Range. The character range is an enhancement to the
definition of character classes. It is possible to mix character classes
containing range restrictions with character classes that do not
contain these restrictions. These are the restrictions to using this
functionality:

• The minimum and maximum values should be greater than or
equal to 0.

• The minimum value will be converted to 1 if the value is 0
and is specified in a required rule.

• The minimum value will be converted to 0 if the value is
greater than 1 and is specified in an allowed rule.

• The minimum value should be less than or equal to the maxi-
mum.
– The minimum and maximum values can the same — this

means that the character class should have exactly that
number of occurrences.

• This functionality must be combined with the minlength
rule, at least.

To maintain coherence and the correct functionality of this exten-
sion, there are some edge cases where the ranges will be discarded.
These are those cases:

• The minlength rule is not present.
• The sum of all required rules’ maximum values is less than

the minlength value.
– If a required rule does not have a range, its maximum

value will be considered as an integer greater than 100,
forcing this sum to be greater than the minlength value.
A requirement for a password to be at least 100 characters
long is practically unreal.

• The sum of all required rules’ minimum values is greater
than the maxlength value — if maxlength is specified.

• The minimum and maximum values are both 0.
• The range is used with values ascii-printable or unicode.

Our package has been published in the npm official repository,
under the name pwrules-annotations [28]. We intend to propose
our changes to Apple and hopefully have our work integrated with
the official repository. At the time of writing, we have not yet issued
a pull request.

4 SMARTPASSWORDS: INTEGRATING
APPLE’S DSL WITH BITWARDEN

In this section, we describe a prototype that incorporates our npm
package and thus takes advantage of the extension to Apple’s DSL

to describe password policies. This feature offers great potential
in terms of usability. Some websites implement strict password
policies (e.g., Fnac Portugal has a policy of “Minimum of 8 charac-
ters; At least one lowercase letter, one uppercase letter, one digit and
one special ”) , which is not the best practice as Tan et al.’s work
suggests [38] — “Although prior work has repeatedly found that
requiring more character classes decreases guessability, researchers
have shown that character-class requirements lead to frustration and
difficulty for users. Since other requirements, e.g., minimumlength or
blocklist requirements, can strengthen passwords with less negative
impact on usability research has advocated retiring character-class
requirements. These recommendations have been standardized in re-
cent NIST password-policy guidance.”. For users that already take
the extra effort of using a password manager and use its randomly
generated passwords, such policies may cause discontent and frus-
tration towards password managers because a generated password
may not comply with them [10]. This hinders usability, and there is
a considerable chance that the user will resort to password reuse or
create an easily guessed password to overcome this obstacle, both
undesirable behaviors.

4.1 Password Manager Choice
Nowadays, there are multiple password managers, all of them with
great compatibility between OS’s and devices. To the best of our
knowledge, 1Password is the only password manager that does
what we aim to achieve [1]. They use Apple’s DSL and the website
quirks8 found in Apple’s repository [4] containing the password
policies of websites specified in Apple’s DSL. These quirks are
crowd-sourced since everyone can contribute to them.

There were two main candidates to become our prototype, Google
Chrome’s built-in password manager and Bitwarden [8]. Although
Chrome is the browser with the most users, according to a recent
study9, due to being a browser extension, and it presented more
clarity in its code, and the fact that this project was developed in
Passcert’s context — which adopted Bitwarden as its base password
manager — Bitwarden felt more suitable to develop our work.

4.2 The Prototype
We started by investigating Bitwarden’s browser extension. Browser
extensions communicate using messages between content scripts
and the rest of the extension. Content scripts are files that run in
the context of web pages. These scripts use the DOM10 so they are
able to read and change details of webpages. They can also pass
information to their parent extension.

Taking advantage of this, we created a content script that ac-
cesses the DOM and searches for the passwordrules annotation,
which Apple’s DSL uses to start describing the password policy
rules. Our extension also uses this annotation. Upon finding the an-
notation, the content script sends a message to its parent extension
containing the password rules. If no annotation is found, a message
is also sent, with a special value — no-rules. We assume that in a
given web page there is only one password policy described: having
8"Quirk" is a term from web browser development that refers to a website-specific,
hard-coded behavior to work around an issue with a website that can not be fixed in a
principled, universal way.
9https://gs.statcounter.com/browser-market-share
10https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://gs.statcounter.com/browser-market-share
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

SmartPasswords: Increasing Password Managers’ Usability by Generating Compliant Passwords

multiple password policies would be strange from a usability point
of view and could result in a possible crash of this feature.

Having received a message with the rules, the extension now
utilizes our npm package to parse them. The core of the extension
will then use these parsed rules to convert them to a format that
Bitwarden recognizes, allowing it to generate a compliant password.

Because we believe our work to be important in fixing a usability
problem and because our solution, whilst not innovative in contents,
brings value to a real-world application, we submitted our changes
to Bitwarden [27]. Bitwarden has internally approved our features
and will be going through the code review process to get them ready
to be merged into the product. This is a major accomplishment since
there will be millions of users benefiting from our improvements.

4.3 Generation and Compliance
Aside from the checks that were already being made by Bitwarden’s
extension — password length, permitted characters, etc. — we cre-
ated three new compliance checks, each one correlated with each
new feature introduced in our npm package. Thus, after a password
is generated, we verify if it is compliant with the blocklist rule,
the minclasses rule and the character range requirement.

Blocklist. To verify the compliance of the password with the
blocklist rule, we verify if it contains any word inside the block-
list. So if we have a blocklist containing 3 leaked passwords, e.g.,
password, 1234, and helloworld, we check for the occurrence of
each one of these words in any part of the generated password. For
example, the password 9PHeyEGBg.*aP3 does not contain any of
the words in the blocklist, but the password 9PHeyEGBg.*aP31234
does. Consequently, another password would have to be generated
and evaluated accordingly.

Minclasses. To ensure compliance with the minclasses rule, we
separate each letter of the password into its list, according to the
character set it belongs to — uppercase, lowercase, digit, or special.
Once the last character of the password is analyzed, we count, out
of the 4 lists we created, how many have elements. If this number is
less than the minclasses value, the password is not compliant and
must be regenerated. To exemplify, imagine the minclasses rule
value of 3 the password 9pheyegbg12ap3: it has only lowercase
letters and digits. As such, the password is invalid and will be
regenerated.

Character Range. Much like the minclasses verification, to en-
sure compliance with the character’s range, we ascertain that the
password contains at least the minimum required characters, ac-
cording to their range. For instance, a character range such as
required: upper(3, 6);, and omitting the other rules, would
make the password 9PHeyEGBG.*aP3 invalid.

Our verification for password compliance incurs in a possible
non-termination error, i.e., there is a possibility that the password
generated will always be non-compliant with the policies. However,
this risk is low, because the generator uses a RNG.

4.4 Bitwarden and Passcert’s Generator
In the context of Passcert’s project, a formally verified password
generator is being developed. To contribute to the goals of Pass-
Cert and to demonstrate that our development can be integrated

with different products, we extended Passcert’s password manager
with our SmartPasswords feature. Passcert’s password manager
is an extension of Bitwarden and Passcert’s generator is written
in Jasmin [2] and follows an algorithm such that, when given a
password composition policy, it will generate a random password.
This generator has two verified properties:

• Functional Correctness: Given any password composition
policy, the generated password will always satisfy the policy.

• Security: Given any password composition policy, the pass-
word is generated according to a uniform distribution. This
means that every possible password that satisfies the given
policy has the same probability of being generated.

Bitwarden scans the DOM for the policies and uses our npm
package to parse them. We replaced Bitwarden’s default password
generator with Passcert’s Jasmin password generator. Since in the
context of the browser extension it is not possible to directly run
local processes, we exposed our password generator as a RESTful
service: the extension sends a POST request, with the body of the
request containing the required password policy. The server then
sends a response with the generated password. The connection
between the browser extension and the server uses HTTPS.

5 EVALUATION
Since we want to obtain passwords that satisfy certain rules, speci-
fied by each website, using both Apple’s DSL and our extension, we
propose to measure how many passwords fail to comply with such
rules when using the password managers extended with SmartPass-
words.

To ascertain the functional correctness — given any password
policy, the generated password will always satisfy the policy —
of every generated password, we created a script11 to automate
this process — policy_compliance_check.py. It verifies if each
password satisfies a given policy, by checking if each password
contains only characters pertaining to required or allowed character
classes, as well as length constraints. It also has the ability to verify
that the blocklist rule, the minclasses, and the character range
constraints are being satisfied by the password.

The tool was first built to test our integration with Passcert’s
password generator, which generates a password with a given
length, and not a minimum length. Because of this, the tool only
ensures that the password has said length value. The same goes
for the maximum value for each character class: it is always, at
most, the same value as the length of the password, i.e., can take
values between 0 and the length of the password. The policy that
is used to verify the compliance of any password is specified by
using nine numbers in a row, separated by a space. Each number
represents, respectively, the password length, the minimumLower,
maximumLower, minimumUpper, maximumUpper, minimumNum-
bers, maximumNumbers, minimumSpecial, maximumSpecial. So, to
test the compliance of a list of passwords against a policy that
requires at least one character from each character class and mini-
mum length of 14, we would write 14 1 14 1 14 1 14 1 14. To
test against a policy that requires length of 14, a minimum of three
character classes and the verification against a blocklist, we would
write 14 0 14 0 14 0 14 0 14 --minclasses 3 --blocklist.
11GitHub repository: https://github.com/passcert-project/pw_generator_server

https://github.com/passcert-project/pw_generator_server

João Miguel Pereira Campos

This is the methodology we followed:
(1) Choose a policy, preferably one that generates conflict with

Bitwarden’s default settings, since it is where the usability
problem occurs.

(2) Generate a total of 10000 passwords and distribute them
across 10 files for greater detail: we can derive results from
the whole lot of generated passwords or from a specific file.
This generation is done using Bitwarden’s current solution
via their CLI application , i.e., not including the SmartPass-
words feature. We have a script that facilitates this process,
called generate_bw_passwords.py.

(3) Run the policy compliance script we wrote to find the num-
ber of non-compliant passwords, called policy_compliance
_check.py.

(4) Generate a total of 1000 passwords using our SmartPass-
words feature, i.e., Bitwarden’s generator and the ability to
read Apple’s DSL. This step is done manually, because, at
the time of writting, we were not able to include our Smart-
Password feature in Bitwarden’s CLI app. Thus, we need to
open our version of Bitwarden’s browser extension, where
our feature is implemented, and manually copy each Smart-
Password generated, which is time-consuming. Hence the
lower number of generated passwords.

(5) Run, again, our policy compliance script, regarding the same
policy as before.

(6) Compare both results of the compliance check to take con-
clusions of how SmartPasswords compare with regular Bit-
warden’s passwords.

All these scripts and test data can be found in one of our GitHub
repositories12.

5.1 Evaluating Apple’s DSL Integration with
Bitwarden

To test the need for our solution and the impact it can have, we gen-
erated 10 test files, each containing 1000 randomly generated pass-
words using Bitwarden’s generator default settings — 14-character
password with lowercase, uppercase, and numbers. We used the
following policy, which is used by British government services,
according to Apple’s quirks [5]:

minlength: 10; required: lower; required: upper;
required: digit; required: special;

We checked if the passwords generated by Bitwarden satisfy
this policy, using a policy that includes at least one character of
each character class, 14 1 14 1 14 1 14 1 14. All passwords
failed this test since Bitwarden’s default settings do not include
symbols. Granted, to solve this, a simple tick in a checkbox on
the User Interface is enough to include special characters in the
password generation. But even with special characters included,
there are some problems. According to the same source [5], Virgin
Mobile’s13 website has this policy:

minlength: 8; required: lower; required: upper;
required: digit; required: [!#$@];

12See footnote 11.
13https://virginmobile.ca

We generated again a total of 10000 passwords, distributed by 10
files, using Bitwarden’s generator and, this time, including symbols.

Since our compliance verification tool checks the special char-
acters by comparing them with Bitwarden’s special characters set
— [!@#$%^&*] —, we had to change this set on our tool, so that
the tool would check only the website’s required special symbols —
[!#$@]. In other words, after this change in the special character
set, a password is compliant if and only if it contains one of the
four symbols required (and, of course, follows the other rules as
well!).

The results obtained confirm our suspicions that this policy
would present challenges to Bitwarden: 2671 passwords — 26,71%
— failed. This means that, roughly, one in every four passwords
generated by Bitwarden would not be accepted by this website. We
tested again with 14 1 14 1 14 1 14 1 14.

This is an instance of the problem discussed above, regarding
users’ frustration with the generation of non-compliant passwords
and it can easily be solved using our solution.

Having confirmed the problem, we generated 1000 passwords,
distributed across 10 files, using our SmartPasswords and we got
the expected result: 100% compliance with both the policies seen
previously. We only generated 1000 passwords because this is a
manual, time-consuming process. In a close future, we hope to make
this generation easier, by using an adequate generation script.

5.2 Evaluating Passcert’s DSL Integration with
Bitwarden

Having justified the need of our SmartPassword solution with a
couple of tests, we now aim to analyse what kind of policies our
extension to Apple’s DSL supports. The main objective is to ensure
that all passwords generated are compliant with the specified policy,
i.e., how effective our solution is.

We created a new, different version of Bitwarden’s browser ex-
tension that supports SmartPasswords, but with our DSL instead
of Apple’s. This version is able to interpret the blocklist and
minclasses rules, as well as the character range feature.

We followed a similar methodology as before, with a few changes:

(1) Choose a policy that tests our solution.
(2) Generate a total of 100 passwords using our SmartPasswords

feature, i.e., Bitwarden’s generator and the ability to read
Passcert’s DSL. This step is done manually, because, at the
time of writting, we were not able to include our SmartPass-
word feature in Bitwarden’s CLI app. Thus, we need to open
our version of Bitwarden’s browser extension, where our
feature is implemented, and manually copy each SmartPass-
word generated, which is time-consuming. Hence the lower
number of generated passwords.

(3) Run our policy compliance script, regarding the same policy
as before.

(4) Assess the results and verify the level of effectiveness of our
solution.

We tested four policies, as they appeared to be a fair representa-
tion of the new features we introduced. The policies chosen were:

(1) minlength: 8; allowed: ascii-printable; minclasses:
3; blocklist:default;

https://virginmobile.ca

SmartPasswords: Increasing Password Managers’ Usability by Generating Compliant Passwords

(2) minlength: 10; required: upper(4, 10); required:
lower(4, 6); required: digit(4, 8); required: special
(4, 10);

(3) minlength: 14; required: lower(5, 10); required:
digit(5, 10); allowed: upper(0, 4), special; minclasses:
3;

(4) minlength: 14; required: lower(5, 10), digit(5,
10); allowed: upper, special;

Policy 1. This is the description of a classic password rule through-
out academic studies [32, 38], 3c8, “a password that must be at least
8 characters long and must contain at least 3 character classes”.

We used our tool to verify if all 100 passwords were compliant
against the policy 8 0 8 0 8 0 8 0 8 --minclasses 3 and only
94 were, leaving 6 generated passwords to be non-compliant. This
happens because Bitwarden has a default value for password length,
14. If the minlength is lower than 14, it will be changed to 14. Thus,
the generator was working with 14 as the maximum capacity for
each character class. All 6 non-compliant passwords failed because
they had more than 8 characters of one class. When we tested again,
but using the policy 14 0 14 0 14 0 14 0 14 --minclasses 3,
all passwords were compliant.

Policy 2. This policy requires that the password has at least 4
characters of each character class. It lets us test the range property
we introduced. We tested this batch of passwords with 16 4 6 4
10 4 8 4 10, and we got 100% compliance. The minlength of
this password will always be 16 in Bitwarden’s generator due to
the restrictions for each character class. Thus, we check that the
password has to have 16 characters.

Policy 3. In this case, we use ranges for the allowed rule as
well. This means that the password can have special characters
and, at most, 4 uppercase characters. It also must have at least 5
lowercase characters and at least 5 digits. At least 3 character classes
must be present in the password. We checked these rules against
14 5 10 0 4 5 10 0 14 --minclasses 3 and got, as expected,
100% compliance. However, we also tested against the same policy,
adding the --blocklist verification, and we got 91% compliance.
This means that 9 passwords had some substring that was found in
a previous password leak. These substrings were all composed of
4 digits together, e.g., 2yfpOt31d8995G failed due to the substring
8995 since 4 digits together are usually a PIN number, and PIN
numbers are weak passwords. This was resolved by generating
passwords with the same policy and the addition of the blocklist
rule.

Policy 4. This policy allows to test disjunctive rules. So, these
constraints force the password to contain either 5 lowercase char-
acters or 5 digits, at least, but not both. The password can also
have special characters and uppercase characters. To test this, we
had to do three tests: (1) test if the passwords had both digits and
lowercase letters; (2) test if passwords were containing just low-
ercase letters and not digits; (3) test if passwords were contain-
ing only digits and no lowercase letters. Thus we tested (1) with
14 5 10 0 14 5 10 0 14 and got 0% compliance as expected:
no password contains both digits and lowercase letters. After, we
tested (2) with 14 5 10 0 14 0 0 0 14 and got 51% compliance:
51 passwords contain lowercase letters and no digits. Lastly, we

tested (3) with 14 0 0 0 14 5 10 0 14 and got 49% of compliance,
as expected: the rest of the passwords do not contain lowercase
letters and contain digits.

Testing non-termination. As a last test to address the possible non-
termination of the password generation, we generated, manually,
1000 passwords with the following policy:

minlength: 16; blocklist: default; minclasses: 1;

This policy allows every ascii-printable character and re-
stricts the password to, at least, have 16 characters and checks
its substrings against a blocklist. This is suggested as a good be-
haviour by Tan et al.: “Since other requirements, e.g., minimumlength
or blocklist requirements, can strengthen passwords with less negative
impact on usability research has advocated retiring character-class
requirements.”.

Our results, 100% compliance with the policy 16 0 16 0 16 0 16
0 16 --blocklist, help to demonstrate that the non-termination
scenario is indeed rare, as we had suggested. The chances of getting
this non-termination problem increase when greater restrictions
are inserted in the policy: more restrictions like character ranges or
removing permitted characters imply less margin for randomness,
and, as we have seen, this is not advisable.

6 CONCLUSION
Our work aimed to review the current state-of-the-art regarding
password managers, password composition policies and verify if
researcher’s recommendations for passwords are being incorpo-
rated in them. Through our analysis, we found multiple languages
capable of expressing password policies and we found that one of
these, Apple’s DSL, was more suited for our investigation.

Based on our experiments integrating Apple’s DSL with Bitwar-
den’s browser extension, there is a great benefit in websites using
this language to express their password policies to password man-
agers: we achieved great results in generating compliant passwords.
Our solution was accepted internally by Bitwarden and is now
going through their code review process in order to be merged into
the final product. This will impact millions of users.

To accommodate recent researcher’s insight [21, 32, 38] on pass-
word policies, we expanded Apple’s DSL with 3 new features —
minclasses, blocklist and character ranges — and created a pro-
totype with Bitwarden, which also yielded great success rates.

Lastly, our work allowed the creation of a prototype of a pass-
word manager with a formally verified password generator, which
is Passcert’s main goal.

6.1 Future Work
While our work is a concrete solution to a common problem, it can
still be enriched. Apple’s DSL can be further expanded with rules
like max-frequency or exclude.

The max-frequency is currently an open issue in Apple’s Github14

and would restrict the frequency of any character to this value.
The exclude would exclude a set of custom characters, e.g.

exclude:[aeiouAEIOU] would exclude all vowels from the pass-
word.

14Apple’s Github Issue: https://github.com/apple/password-manager-resources/issues/
387

https://github.com/apple/password-manager-resources/issues/387
https://github.com/apple/password-manager-resources/issues/387

João Miguel Pereira Campos

The tool that verifies password compliance is not equipped to
test custom character classes, e.g., [aeiou]. This would allow us to
test even more combinations and assert if the passwords generated
are effectively compliant with the policies restraining them.

There is also room for improvement regarding the password
generation in Bitwarden, when SmartPasswords are live in produc-
tion, to completely eliminate the chance of non-termination of the
generation algorithm.

Lastly, our feature needs to be able to read from Apple’s quirks [5]
to be effective. However, our improvements must be met halfway
by webadmins, who should strive to include password composition
policies in their websites.

ACKNOWLEDGMENTS
This work was partially funded by the PassCert project, a CMU
Portugal Exploratory Project funded by Fundação para a Ciência e
Tecnologia (FCT), with reference CMU/TIC/0006/2019.

REFERENCES
[1] 1Password. 2021. 1Password Smart Passwords. https://blog.1password.com/a-

smarter-password-generator/. [Online; accessed 15-October-2021].
[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-assurance and high-speed cryptography. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1807–1823.

[3] Apple. 2021. Customizing Password AutoFill Rules. https://developer.apple.com/
documentation/security/password_autofill/customizing_password_autofill_
rules. [Online; accessed 12-October-2021].

[4] Apple. 2021. Password Manager Resources. https://github.com/apple/password-
manager-resources. [Online; accessed 15-October-2021].

[5] Apple. 2021. Password Quirks. https://github.com/apple/password-manager-
resources/blob/main/quirks/password-rules.json. [Online; accessed 13-October-
2021].

[6] Apple. 2021. Password Rules Validation Tool. https://developer.apple.com/
password-rules/. [Online; accessed 12-October-2021].

[7] Apple. 2021. Web sites won’t accept Safari generated strong passwords due to
dashes or other criteria. https://discussions.apple.com/thread/251341081. [Online;
accessed 26-October-2021].

[8] Bitwarden. 2021. Bitwarden Home Page. https://bitwarden.com/. [Online;
accessed 08-October-2021].

[9] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on Security and Privacy. IEEE,
553–567.

[10] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. 2006. A Usability Study
and Critique of Two Password Managers.. In USENIX Security Symposium, Vol. 15.
1–16.

[11] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. 2014. The tangled web of password reuse.. In NDSS, Vol. 14. 23–26.

[12] EA. 2021. Password Does Not Meet Requirements. https://web.archive.org/
web/20210817105229/https://answers.ea.com/t5/EA-General-Questions/quot-
Password-Does-Not-Meet-Requirements-quot/td-p/5744758. [Online; accessed
26-October-2021; archived 26-October-2021].

[13] Dinei Florencio and Cormac Herley. 2007. A large-scale study of web password
habits. In Proceedings of the 16th international conference on World Wide Web.
657–666.

[14] Paolo Gasti and Kasper B Rasmussen. 2012. On the security of password manager
database formats. In European Symposium on Research in Computer Security.
Springer, 770–787.

[15] Shirley Gaw and Edward W Felten. 2006. Password management strategies for
online accounts. In Proceedings of the second symposium on Usable privacy and
security. 44–55.

[16] Google. 2021. Password Requirements Proto . https://chromium.googlesource.
com/chromium/src/+/refs/heads/main/components/autofill/core/browser/
proto/password_requirements.proto. [Online; accessed 08-October-2021].

[17] Miguel Grilo, João Campos, João F. Ferreira, José Bacelar Almeida, and Alexandra
Mendes. 2021. Verified Password Generation from Password Composition Policies.
Submitted for publication. Draft available from authors..

[18] Cormac Herley. 2009. So long, and no thanks for the externalities: the rational
rejection of security advice by users. In Proceedings of the 2009 workshop on New
security paradigms workshop. 133–144.

[19] Moritz Horsch, Mario Schlipf, Stefan Haas, Johannes Braun, and Johannes Buch-
mann. 2016. Password Policy Markup Language. (2016).

[20] Blake Ives, Kenneth R Walsh, and Helmut Schneider. 2004. The domino effect of
password reuse. Commun. ACM 47, 4 (2004), 75–78.

[21] Saul Johnson, João F Ferreira, Alexandra Mendes, and Julien Cordry. 2020. Skep-
tic: Automatic, justified and privacy-preserving password composition policy
selection. In Proceedings of the 15th ACM Asia Conference on Computer and Com-
munications Security. 101–115.

[22] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-based Password Managers.
In 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, 465–479. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/li_zhiwei

[23] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C
Van Oorschot. 2012. Tapas: design, implementation, and usability evaluation
of a password manager. In Proceedings of the 28th Annual Computer Security
Applications Conference. 89–98.

[24] Daniel Miessler, Jason Haddix, and g0tmi1k. 2021. SecLists. https:
//github.com/danielmiessler/SecLists/blob/master/Passwords/Common-
Credentials/10-million-password-list-top-100000.txt. [Online; accessed
13-October-2021].

[25] Sean Oesch and Scott Ruoti. 2020. That Was Then, This Is Now: A Security
Evaluation of Password Generation, Storage, and Autofill in Browser-Based
Password Managers.. In USENIX Security Symposium.

[26] Passcert. 2021. Passcert Homepage. https://passcert-project.github.io/. [Online;
accessed 15-October-2021].

[27] Passcert. 2021. Passcert’s Pull Request. https://github.com/bitwarden/browser/
pull/2047. [Online; accessed 17-October-2021].

[28] Passcert. 2021. pwrules-annotations. https://www.npmjs.com/package/
@passcert/pwrules-annotations. [Online; accessed 13-October-2021].

[29] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s go in for a closer look: Observing passwords in their natural habitat. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 295–310.

[30] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. 2019. Why people (don’t) use password managers effectively.
In Fifteenth Symposium On Usable Privacy and Security (SOUPS 2019). USENIX
Association, Santa Clara, CA. 319–338.

[31] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell. 2005.
Stronger Password Authentication Using Browser Extensions.. InUSENIX Security
Symposium. Baltimore, MD, USA, 17–32.

[32] Richard Shay, Saranga Komanduri, Adam L Durity, Phillip Huh, Michelle L
Mazurek, Sean M Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith
Cranor. 2016. Designing password policies for strength and usability. ACM
Transactions on Information and System Security (TISSEC) 18, 4 (2016), 1–34.

[33] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. 2014.
Password managers: Attacks and defenses. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 449–464.

[34] Frank Stajano, Max Spencer, Graeme Jenkinson, and Quentin Stafford-Fraser.
2014. Password-manager friendly (PMF): Semantic annotations to improve the
effectiveness of password managers. In International Conference on Passwords.
Springer, 61–73.

[35] Elizabeth Stobert and Robert Biddle. 2014. The password life cycle: user behaviour
in managing passwords. In 10th Symposium On Usable Privacy and Security
({SOUPS} 2014). 243–255.

[36] Ben Stock and Martin Johns. 2014. Protecting users against XSS-based password
manager abuse. In Proceedings of the 9th ACM symposium on Information, computer
and communications security. 183–194.

[37] Hung-Min Sun, Yao-Hsin Chen, and Yue-Hsun Lin. 2011. oPass: A user authenti-
cation protocol resistant to password stealing and password reuse attacks. IEEE
Transactions on Information Forensics and Security 7, 2 (2011), 651–663.

[38] Joshua Tan, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2020. Practical
Recommendations for Stronger, More Usable Passwords Combining Minimum-
strength, Minimum-length, and Blocklist Requirements. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 1407–1426.

[39] TechNet. 2021. Can’t create local user "Password does not meet password policy
requirements" - but it does. https://web.archive.org/web/20211026082725/https:
//social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-
99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-
password-policy-requirementsquot-but-it?forum=win10itprosecurity. [Online;
accessed 26-October-2021; archived 26-October-2021].

[40] TNW. 2021. The Next Web - 2021 Digital Trends. https://thenextweb.com/
news/insights-global-state-of-digital-social-media-2021. [Online; accessed 10-
October-2021].

https://blog.1password.com/a-smarter-password-generator/
https://blog.1password.com/a-smarter-password-generator/
https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://github.com/apple/password-manager-resources
https://github.com/apple/password-manager-resources
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://developer.apple.com/password-rules/
https://developer.apple.com/password-rules/
https://discussions.apple.com/thread/251341081
https://bitwarden.com/
https://web.archive.org/web/20210817105229/https://answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://web.archive.org/web/20210817105229/https://answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://web.archive.org/web/20210817105229/https://answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/autofill/core/browser/proto/password_requirements.proto
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/autofill/core/browser/proto/password_requirements.proto
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/autofill/core/browser/proto/password_requirements.proto
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-100000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-100000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-100000.txt
https://passcert-project.github.io/
https://github.com/bitwarden/browser/pull/2047
https://github.com/bitwarden/browser/pull/2047
https://www.npmjs.com/package/@passcert/pwrules-annotations
https://www.npmjs.com/package/@passcert/pwrules-annotations
https://web.archive.org/web/20211026082725/https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://web.archive.org/web/20211026082725/https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://web.archive.org/web/20211026082725/https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://web.archive.org/web/20211026082725/https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://thenextweb.com/news/insights-global-state-of-digital-social-media-2021
https://thenextweb.com/news/insights-global-state-of-digital-social-media-2021

	Abstract
	1 Introduction
	1.1 Work Objectives
	1.2 Contributions

	2 Background Work
	2.1 Password-Based Authentication
	2.2 Password Reuse
	2.3 Password Managers

	3 Extending Apple's Password Autofill Rules
	3.1 Apple's Password Autofill Rules
	3.2 Properties description
	3.3 Identifiers
	3.4 Weaknesses
	3.5 The npm package

	4 SmartPasswords: Integrating Apple's DSL with Bitwarden
	4.1 Password Manager Choice
	4.2 The Prototype
	4.3 Generation and Compliance
	4.4 Bitwarden and Passcert's Generator

	5 Evaluation
	5.1 Evaluating Apple's DSL Integration with Bitwarden
	5.2 Evaluating Passcert's DSL Integration with Bitwarden

	6 Conclusion
	6.1 Future Work

	References

